Movimiento Rectilinio Uniforme acelerado

El movimiento rectilíneo uniformemente acelerado(MRUA), también conocido como movimiento rectilíneo uniformemente variado (MRUV), es aquel en el que un móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración constante.

Un ejemplo de este tipo de movimiento es el de caída libre vertical, en el cual la aceleración interviniente, y considerada constante, es la que corresponde a la gravedad.

También puede definirse el movimiento como el que realiza una partícula que partiendo del reposo es acelerada por una fuerza constante.

El movimiento rectilíneo uniformemente acelerado (MRUA) es un caso particular del movimiento uniformemente acelerado (MUA).

En mecánica clásica el movimiento rectilíneo uniformemente acelerado (MRUA) presenta tres características fundamentales:

  1. La aceleración y la fuerza resultante sobre la partícula son constantes.
  2. La velocidad varía linealmente respecto del tiempo.
  3. La posición varía según una relación cuadrática respecto del tiempo.

La figura muestra las relaciones, respecto del tiempo, del desplazamiento (parábola), velocidad (recta con pendiente) y aceleración (constante, recta horizontal) en el caso concreto de la caída libre (con velocidad inicial nula).

El MRUA, como su propio nombre indica, tiene una aceleración constante, cuyas relaciones dinámicas y cinemáticas, respectivamente, son:

(1) a(t) = a = \frac{F}{m} = \frac{d^2x}{dt^2}

En el movimiento rectilíneo acelerado, la aceleración instantánea es representada como la pendiente de la recta tangente a la curva que representa gráficamente la función v(t).

La velocidad v para un instante t dado es:

(2a)v(t)=at+ v_0 \,

siendo v_0\, la velocidad inicial.

Finalmente la posición x en función del tiempo se expresa por:

(3) x(t) = \frac {1}{2} a t^2  + v_0t + x_0

donde x_0\, es la posición inicial.

Además de las relaciones básicas anteriores, existe una ecuación que relaciona entre sí el desplazamiento y la rapidez del móvil. Ésta se obtiene despejando el tiempo de (2a) y sustituyendo el resultado en (3):

(2b)v^2= 2 a (x - x_0) + v_0^2 \,

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s